Se la funzione d'onda descrive quello che un sistema potrebbe essere, e il collasso della funzione d'onda quello che un sistema diventa quando viene osservato, allora una domanda sorge spontanea: che cosa significa osservare?
In meccanica quantistica l'osservatore non è un semplice spettatore passivo e la misura non si limita a rivelare una proprietà già esistente, ma contribuisce a definirla. Questo è uno dei punti di rottura più netti con la fisica classica, dove il mondo possiede proprietà definite indipendentemente da chi le osserva.
Nel linguaggio quantistico, osservare significa quindi far interagire un sistema con un apparato di misura, e quindi interagisce con l'ambiente, e questa interazione "distrugge" la sovrapposizione di stati che era descritta dalla funzione d'onda e pertanto seleziona un solo risultato specifico. Quello che la teoria non descrive in modo definitivo è "il quando" e "il come" questo passaggio avvenga. Ed è proprio qui che nasce quello che viene definito "problema della misura".
Il problema dell'osservatore però non riguarda solo gli strumenti e i laboratori, ma tocca una questione più profonda, ovvero: dove finisce il sistema quantistico e dove inizia il mondo classico?
Un elettrone può trovarsi in più stati contemporaneamente, ma ovviamente il rivelatore, cioè il sistema di misura, no. La "linea di confine" che c'è tra questi due regimi non è fissata dalla teoria, e questo rende la meccanica quantistica molto efficace nel calcolo ma purtroppo incompleta nella sua interpretazione, e a questo si aggiunge anche un secondo problema, ancora più sottile: quello del tempo. "Nella meccanica quantistica il tempo non è un osservabile come la posizione o l'energia, è un parametro esterno, che scandisce l'evoluzione della funzione d'onda, ma non viene mai quantizzato". Questa frase significa che il sistema evolve nel tempo, ma... il tempo stesso non fa parte del sistema.
Tutto questo è in contrasto con la relatività, dove il tempo è dinamico, è intrecciato allo spazio ed è influenzato dalla materia e dall'energia. Il problema è che quando si tenta di unire la meccanica quantistica e la gravità (come accade nella teoria delle stringhe) questa differenza diventa un ostacolo concettuale enorme. Ovvero: se lo spazio-tempo stesso è soggetto a "fluttuazioni quantistiche", ha senso parlare di un tempo esterno e assoluto?
Il problema del tempo si riflette anche nel collasso della funzione d'onda. Il collasso sembra avvenire in un "istante preciso", ma "istante" rispetto a quale tempo? Forse il tempo dell'osservatore? Il tempo dell'apparato di misura? Oppure un altro tipo di tempo più profondo e ancora sconosciuto?
Purtroppo la meccanica quantistica standard non risponde a queste domande, si limita a funzionare straordinariamente bene senza però spiegare completamente il significato dei suoi stessi concetti.
In questa prospettiva l'osservatore non è più un elemento casuale ma è invece una parte essenziale di questo quadro, ma non perché la coscienza "crea" la realtà, ma perché qualsiasi descrizione fisica richiede una separazione tra quello che viene osservato e chi lo osserva, e la meccanica quantistica rende effettivamente questa separazione instabile, sfumata e problematica.
Forse è per questo che se torniamo dalle teorie più "speculative" alla meccanica quantistica "pura" abbiamo l'impressione di trovarci di fronte a un confine dove da un lato abbiamo una teoria estremamente precisa e dall'altro invece moltissime domande aperte sull'osservazione, sul tempo e sulla realtà.
Flatlandia abita proprio dentro questo confine, nel luogo dove la fisica smette di descrivere oggetti e inizia ad interrogarsi sulle funzioni, sulle relazioni e quindi sul significato stesso di cosa significa osservare.